From Wikipedia, the free encyclopedia
Hi Michelle!
Here is a helpful formula:
V
a
r
(
X
)
=
E
[
X
2
]
−
(
E
[
X
]
)
2
{\displaystyle \mathrm {Var} (X)=\mathrm {E} [X^{2}]-(\mathrm {E} [X])^{2}\,}
See if you can prove it!
Here is the proof that
E
[
E
[
X
|
Y
]
]
=
E
[
X
]
{\displaystyle \mathrm {E} [\mathrm {E} [X|Y]]=\mathrm {E} [X]\,}
for any
X
{\displaystyle X\,}
:
Let
X
{\displaystyle \mathbb {X} }
be the range of
X
{\displaystyle X\,}
and
Y
{\displaystyle \mathbb {Y} }
the range of
Y
{\displaystyle Y\,}
. Then
E
[
E
[
X
|
Y
]
]
=
∑
y
∈
Y
p
Y
(
y
)
E
[
X
|
Y
=
y
]
{\displaystyle \mathrm {E} [\mathrm {E} [X|Y]]=\sum _{y\in \mathbb {Y} }p_{Y}(y)\mathrm {E} [X|Y=y]}
=
∑
y
∈
Y
p
Y
(
y
)
∑
x
∈
X
x
p
X
|
Y
(
x
|
y
)
{\displaystyle =\sum _{y\in \mathbb {Y} }p_{Y}(y)\sum _{x\in \mathbb {X} }xp_{X|Y}(x|y)}
=
∑
y
∈
Y
p
Y
(
y
)
∑
x
∈
X
x
p
X
,
Y
(
x
,
y
)
p
Y
(
y
)
{\displaystyle =\sum _{y\in \mathbb {Y} }p_{Y}(y)\sum _{x\in \mathbb {X} }x{\frac {p_{X,Y}(x,y)}{p_{Y}(y)}}}
=
∑
y
∈
Y
∑
x
∈
X
x
p
Y
(
y
)
p
X
,
Y
(
x
,
y
)
p
Y
(
y
)
{\displaystyle =\sum _{y\in \mathbb {Y} }\sum _{x\in \mathbb {X} }xp_{Y}(y){\frac {p_{X,Y}(x,y)}{p_{Y}(y)}}}
=
∑
y
∈
Y
∑
x
∈
X
x
p
X
,
Y
(
x
,
y
)
{\displaystyle =\sum _{y\in \mathbb {Y} }\sum _{x\in \mathbb {X} }xp_{X,Y}(x,y)}
=
∑
x
∈
X
∑
y
∈
Y
x
p
X
,
Y
(
x
,
y
)
{\displaystyle =\sum _{x\in \mathbb {X} }\sum _{y\in \mathbb {Y} }xp_{X,Y}(x,y)}
=
∑
x
∈
X
x
∑
y
∈
Y
p
X
,
Y
(
x
,
y
)
{\displaystyle =\sum _{x\in \mathbb {X} }x\sum _{y\in \mathbb {Y} }p_{X,Y}(x,y)}
=
∑
x
∈
X
x
p
X
(
x
)
{\displaystyle =\sum _{x\in \mathbb {X} }xp_{X}(x)}
=
E
[
X
]
{\displaystyle =\mathrm {E} [X]\,}